Developing a daily time step individual level demographic simulation <u>model</u>

Andy Turner

http://bit.ly/TStpJP

Presentation slides prepared for a CSAP research cluster meeting, School of Geography, University of Leeds, UK, 2012-12-11

Outline

- Why?
- What?
- How?
- Results
- Plans and Next Steps
- Feedback

Why?

- Generally...
 - Demographic data is used in a wide range of applications
 - Epidemiology for estimating prevalence and incidence rates
 - Service planning
 - Risk management
 - Commercial
 - Census data tend to be years old by the time outputs are made available
 - Contemporary populations are assumed to be highly and increasingly mobile and fertility in terms of live births is perhaps becoming more variable

- Demographic forecasting is important
 - Planning is a key to sustainability
 - Dependency ratios are increasing in many countries with increasing aged populations
 - Pensions
 - Welfare
 - Services and infrastructure
- Many countries (including the UK) do not have official residential registration data that tracks the location of people (between censuses)
- Our ability to track where everyone has lived improves continually, but we need the models and the data to forecast and provide the best estimates

• Why daily time steps?

- People tend to be born, die and move residences on specific days
 - It intrinsically makes sense to model at this resolution
 - Modelling for multiple days either misses important events or becomes much more complicated
 - Consider
 - migrations of individuals within a time period
 - births (same mother) at different times within a year
- Allows for linkage with models of daily activity that work on sub-daily time steps

- Allows for variation in mortality, fertility and migration rates over the year to be modelled
 - Mortality, Fertility, Miscarriage and Migration are seasonal
 - Student migration
 - Holidays and fertility
 - Winter mortality
 - Power cuts/flood events and birth spikes
- Allows for new and exciting aggregate data/statistics to be produced
 - Distribution of the total number of
 - births per month in a region
 - moves per person in a year
 - maximium, minimum, average, variance

• Why individual level?

- Data can be linked with other individual level data
 - e.g. Disease data
- It has the possibility that other individual data can be augmented or linked
 - Linkage and substitution with "real data"
- Everybody is different
 - Individuals have their own mortality, fertility and migration probabilities and history
 - There is scope for specifying these in the model
 - In such a way as to keep overall counts of births and deaths at observed levels
 - Return migration

What?

- Stages of development
- The nature of the model
- Initialisation
- Daily Simulation
 - Death
 - Birth
 - Migration
- Results

Stages of Development

- Natural change Simulation Model
 - <u>ESRC</u> funded <u>GENESIS Project</u>
 - Leeds Output Area level results produced
- e-Infrastructure
 - JISC funded <u>NeISS Project</u>
 - Web Portal based User Interface
 - Simulation Models configured, run and results stored on e-Science resources
- Migration model component
 - Not externally funded
 - Developed since July 2012

The nature of the model

- Open Source
 - Development repositories
 - Sourceforge
 - <u>https://sourceforge.net/p/neiss/code/328/tree/genesis/</u>
 - University of St Andrews
 - <u>https://e-research.cs.st-andrews.ac.</u> uk/repos/sim/projects/genesis/
 - Thanks to Alex Voss
- Java

<u>http://en.wikipedia.org/wiki/Java_(software_platform)</u>

Dependencies

- Generic Library
- MoSeS Code
 - For loading 2001 UK Population Census Data
- Grid enabled
 - Thanks to NeISS collaboration with Tom Doherty based at University of Glasgow
- Run for multiples of a year
- Individual representation
 - Males
 - Females

• Stochastic yet deterministic

- Based on pseudo-random sequences
- Results replicable
- Study Region
 - Comprised of regions and subregions
- 2 stages to modelling
 - Initialisation
 - Simulation
- Simulation proceeds for each subregion in turn, and for each individual in turn
- Synchronisation needed for each daily step

- There are many simplifying assumptions
 - Many things are assumed to be evenly distributed
 - Some things are not explicitly modelled
- There are interesting model details
 - Pregnancy and miscarriage
 - Multiple births
- Input data
 - Population count data by age and gender
 - Either birth and death counts or fertility and mortality probabilities
 - Migration data

• Output data

- Produced annually for study region, regions, subregions and aggregates of subregions
- Includes raw ASCII data (<u>XML,CSV</u>), binary serialised Java object data, and images (<u>PNG</u>)
 - Population count estimates
 - Mortality and fertility estimates
 - Migration estimates
 - Comparisons with an annual time step model
 - Which uses mid year population estimation
 - An individual level population data set

Legend

× Data Point /Y = X /Y = (0.9373 * X) + 0.0005 RSquare = 0.988

Legend

Initialisation

• For each region

- Daily survival probabilities are calculated for each age and gender
 - Death rate assumed to be even throughout the year
- Daily pregnancy probabilities are calculated for each age of potential mother
 - Annual Live Birth Fertility Rates are factored for multiple births, miscarriage and death of mother
 - Pregnancy rate and miscarriage rate assumed to be even throughout the year

- Daily migration
 - Assumes migration evenly distributed throughout the year
 - General migration probability calculated
 - Internal migration rates are calculated for migration within the region
 - In migration rates are calculated for people moving from all regions not in the study region
- Cumulative sums of migration are calculated to help determine
 - The region destination for each out migration
 - The subregion destination for each in migration

• Each person is initialised

- Assigned a date of birth
- Assigned to a subregion as usually resident
- Females are assigned pregnancies and due dates

Daily Simulation

- For each person
 - Do they die?
 - Is it their birthday?
 - If so update population statistics
 - Do they migrate?
 - If yes, find out where they move to
- For each female
 - If pregnant do they have a miscarriage
 - If due give birth
 - If not pregnant, determine if they become pregnant

- Having gone through the population for all regions in the study region
 - Migrate those migrating out of the study region
 - Migrate those migrating within the study region
 - For migration into the study region from outside of the study region
 - Create individuals
 - Assigning date of birth
 - Record migration origin location
 - Assign subregion usual resident location

How?

- Designed for (scalability) simulating large populations with large numbers of regions and subregions
 - Individual level data stored in collections which are swapped to and from slower access storage as required
 - Numerical indexes are stored in mapped collections
- Computational demands are considerable
 - Consider simulating a single region, population ~1 million, with ~10 thousand subregions
 - Can all the data be stored in the available fast access memory?

- For a simple model, a 10 year simulation might take many days with only one CPU
 - Each individual in the population is updated
 ~3650 times
- The amount of persistent data produced and that we want to store is in the order of tens of GigaBytes
- For a UK Simulation there are in the order of 60 million individuals and 200 thousand subregions
- Grid enabled
- Parallelisation
- Numerical precision
 - Java BigDecimal

Results

- Results for simulations without migration
 - Provide confidence in daily probability calculations for natural processes
 - The expected amounts of deaths, pregnancies, miscarriages and births result at a regional level
 - Variation
 - At sub-regional level can be large
 - At regional level are generally small
 - At aggregated sub-regional level are intermediate
 - For less frequently occurring events is greater

Variation in results

- 10 runs
 - Everything the same except the pseudo-random seed start point

Population

Population

Migration

Types of migration modelled

- Immigration
- In migration to Study Region
- Out migration from Study Region
- Internal migration within Study Region
- Input data
 - 2001 UK Population Special Migration Statistics
 - LAD to LAD flows by age and gender
 - OA to OA flows by age and gender
- Region (LAD to LAD) flows are primarily used

- Subregion (OA to OA) flows are used to assign individuals to subregions with each region
- A migration factor and a minimum flow

Plans and Next Steps

- Add emigration to the model
- Detailed results statistics for migration
- Simulate population change in West Yorkshire from 2001 to 2011
 - Vary migration factor and minimum flow
 - Present results at an appropriate event
 - Publish a paper on the demographic simulation model and the results for West Yorkshire
- Simulate population change for all of England from 2001 to 2011
 - Compare results with 2011 census data
 - More publication

• Further modelling

- Use <u>Nik Lomax</u>'s estimated migration flows for 2001 to 2011
- Constrain migration using subregion area classifications
- Allow for variations in mortality, pregnancy, miscarriage and migration rates over the year
 Student migration
- Migrating groups (families/households)
- Fathers

- Seek data for more detailed simulations
 Annual and regional miscarriage data
- Seek collaboration with statistical offices
- Seek further funding
 - Secondment to UK ONS funded by ESRC?

Feedback

- Much can be done to improve this work
- What has emerged is something like the simplest demographic model
 - There is much detail to add...
- Anyone interested in writing this up or collaborating in anyway?
- Any questions?

Thank You

http://bit.ly/TStpJP